Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645184

RESUMO

Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2 + islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2 + islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2 negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation. One Sentence Summary: Alloreactive chimeric antigen receptor-engineered regulatory T cells limit diabetogenic T cell engraftment and function to prevent type 1 diabetes.

2.
Sci Rep ; 14(1): 8926, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637558

RESUMO

To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Enzima de Conversão de Angiotensina 2 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , Canadá/epidemiologia , Anticorpos , ChAdOx1 nCoV-19 , RNA Mensageiro , Anticorpos Antivirais , Vacinação
3.
Diabetologia ; 67(4): 611-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38236408

RESUMO

Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of antigen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of suppressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of autoimmune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of Treg engineering in the context of type 1 diabetes.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Linfócitos T Reguladores , Receptores de Antígenos de Linfócitos T/metabolismo , Engenharia Genética
4.
medRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37693606

RESUMO

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

5.
Transplantation ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012843

RESUMO

BACKGROUND: Immune-suppressed solid-organ transplant recipients (SOTRs) display impaired humoral responses to COVID-19 vaccination, but T cell responses are incompletely understood. SARS-CoV-2 variants Omicron BA.4/5 (BA.4/5) and XBB.1.5 escape neutralization by antibodies induced by vaccination or infection with earlier strains, but T cell recognition of these lineages in SOTRs is unclear. METHODS: We characterized Spike-specific T cell responses to ancestral SARS-CoV-2 and BA.4/5 peptides in 42 kidney, liver, and lung transplant recipients throughout a 3- or 4-dose ancestral Spike mRNA vaccination schedule. As the XBB.1.5 variant emerged during the study, we tested vaccine-induced T cell responses in 10 additional participants using recombinant XBB.1.5 Spike protein. Using an optimized activation-induced marker assay, we quantified circulating Spike-specific CD4+ and CD8+ T cells based on antigen-stimulated expression of CD134, CD69, CD25, CD137, and/or CD107a. RESULTS: Vaccination strongly induced SARS-CoV-2-specific T cells, including BA.4/5- and XBB.1.5-reactive T cells, which remained detectable over time and further increased following a fourth dose. However, responses to BA.4/5 (1.34- to 1.67-fold lower) XBB.1.5 (2.0- to 18-fold lower) were significantly reduced in magnitude compared with ancestral strain responses. CD4+ responses correlated with anti-receptor-binding domain antibodies and predicted subsequent antibody responses in seronegative individuals. Lung transplant recipients receiving prednisone and older adults displayed weaker responses. CONCLUSIONS: Ancestral strain vaccination stimulates BA.4/5 and XBB.1.5-cross-reactive T cells in SOTRs, but at lower magnitudes. Antigen-specific T cells can predict future antibody responses. Our data support monitoring both humoral and cellular immunity in SOTRs to track COVID-19 vaccine immunogenicity against emerging variants.

6.
J Exp Med ; 220(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37906166

RESUMO

Due to their suppressive capacity, regulatory T cells (Tregs) have attracted growing interest as an adoptive cellular therapy for the prevention of allograft rejection, but limited Treg recovery and lower quality of adult-derived Tregs could represent an obstacle to success. To address this challenge, we developed a new approach that provides large quantities of Tregs with high purity and excellent features, sourced from thymic tissue routinely removed during pediatric cardiac surgeries (thyTregs). We report on a 2-year follow-up of the first patient treated worldwide with thyTregs, included in a phase I/II clinical trial evaluating the administration of autologous thyTreg in infants undergoing heart transplantation. In addition to observing no adverse effects that could be attributed to thyTreg administration, we report that the Treg frequency in the periphery was preserved during the 2-year follow-up period. These initial results are consistent with the trial objective, which is to confirm safety of the autologous thyTreg administration and its capacity to restore the Treg pool.


Assuntos
Transplante de Coração , Linfócitos T Reguladores , Adulto , Humanos , Lactente , Rejeição de Enxerto , Transplante Homólogo
7.
Inflamm Bowel Dis ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874904

RESUMO

BACKGROUND & AIMS: Clostridioides difficile is a toxin-secreting bacteria that is an urgent antimicrobial resistance threat, with approximately 25% of patients developing recurrent infections. Inflammatory bowel disease (IBD) patients are at increased risk of severe, recurrent C. difficile infection. METHODS: To investigate a role for C. difficile infection in IBD pathogenesis, we collected peripheral blood and stool from 20 each of ulcerative colitis patients, Crohn's disease patients, and healthy control subjects. We used a flow cytometric activation induced marker assay to quantify C. difficile toxin-specific CD4+ T cells and 16S ribosomal RNA sequencing to study microbiome diversity. RESULTS: We found IBD patients had significantly increased levels of C. difficile toxin B-specific CD4+ T cells, but not immunoglobulin G or immunoglobulin A, compared with healthy control subjects. Within antigen-specific CD4+ T cells, T helper type 17 cells and cells expressing the gut homing receptor integrin ß7 were reduced compared with healthy control subjects, similar to our previous study of non-IBD patients with recurrent C. difficile infection. Stool microbiome analysis revealed that gut homing, toxin-specific CD4+ T cells negatively associated with microbial diversity and, along with T helper type 17 cells, positively associated with bacteria enriched in healthy control subjects. CONCLUSIONS: These data suggest that IBD patients, potentially due to underlying intestinal dysbiosis, experience undiagnosed C. difficile infections that result in impaired toxin-specific immunity. This may contribute to the development of inflammatory T cell responses toward commensal bacteria and provide a rationale for C. difficile testing in IBD patients.


Crohn's disease and ulcerative colitis patients with no history of Clostridioides difficile infection had dysregulated T cell immunity to C. difficile toxin B. This was significantly different from healthy control subjects but similar to non­inflammatory bowel disease patients with recurrent C. difficile infection.

8.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669115

RESUMO

Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.


Assuntos
Receptores de Antígenos Quiméricos , Camundongos , Animais , Antígenos CD28 , Linfócitos T Reguladores , Transplante Homólogo , Aloenxertos/metabolismo
9.
Transplantation ; 107(9): e222-e233, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528526

RESUMO

BACKGROUND: Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS: The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.


Assuntos
Doença Enxerto-Hospedeiro , Insulinas , Transplante das Ilhotas Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Antígeno HLA-A2 , Leucócitos Mononucleares , Rejeição de Enxerto/prevenção & controle
10.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561596

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for preventing or treating type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B chain 10-23 peptide presented in the context of the IAg7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR redirected NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Cotransfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In WT NOD mice, InsB-g7 CAR Tregs prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising therapeutic approach for the prevention of autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Receptores de Antígenos Quiméricos , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos Endogâmicos NOD , Insulina/metabolismo , Linfócitos T Reguladores
11.
Immunol Rev ; 320(1): 250-267, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37522861

RESUMO

Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.


Assuntos
Terapia de Imunossupressão , Biologia Sintética , Humanos , Linfócitos T Reguladores , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Transcrição Forkhead/metabolismo
12.
Transplantation ; 107(8): 1810-1819, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37365692

RESUMO

BACKGROUND: Acute cellular rejection (ACR), an alloimmune response involving CD4+ and CD8+ T cells, occurs in up to 20% of patients within the first year following heart transplantation. The balance between a conventional versus regulatory CD4+ T cell alloimmune response is believed to contribute to developing ACR. Therefore, tracking these cells may elucidate whether changes in these cell populations could signal ACR risk. METHODS: We used a CD4+ T cell gene signature (TGS) panel that tracks CD4+ conventional T cells (Tconv) and regulatory T cells (Treg) on longitudinal samples from 94 adult heart transplant recipients. We evaluated combined diagnostic performance of the TGS panel with a previously developed biomarker panel for ACR diagnosis, HEARTBiT, while also investigating TGS' prognostic utility. RESULTS: Compared with nonrejection samples, rejection samples showed decreased Treg- and increased Tconv-gene expression. The TGS panel was able to discriminate between ACR and nonrejection samples and, when combined with HEARTBiT, showed improved specificity compared with either model alone. Furthermore, the increased risk of ACR in the TGS model was associated with lower expression of Treg genes in patients who later developed ACR. Reduced Treg gene expression was positively associated with younger recipient age and higher intrapatient tacrolimus variability. CONCLUSIONS: We demonstrated that expression of genes associated with CD4+ Tconv and Treg could identify patients at risk of ACR. In our post hoc analysis, complementing HEARTBiT with TGS resulted in an improved classification of ACR. Our study suggests that HEARTBiT and TGS may serve as useful tools for further research and test development.


Assuntos
Transplante de Coração , Linfócitos T Reguladores , Adulto , Humanos , Rejeição de Enxerto/diagnóstico , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos , Transplante de Coração/efeitos adversos
13.
Eur J Immunol ; 53(6): e2350511, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097063

RESUMO

The metabolic milieu is emerging as a major contributing factor in the maintenance of the immunosuppressive microenvironment within tumors. In particular, the presence of lactic acid produced by highly glycolytic cancer cells is known to suppress antitumor immune cell subsets while promoting immunosuppressive cell populations, such as regulatory T cells (Tregs). Unlike conventional T cells, Tregs have a unique, potent ability to take up lactic acid to fuel both mitochondrial metabolism and gluconeogenesis, thus supporting suppressive function and proliferation. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2023.53:2250258], Rao et al. uncover a novel mechanism by which lactic acid can support Treg accumulation within tumors in mice. This study shows that lactic acid, through a pH-dependent mechanism rather than lactate itself, promotes TGFß-induced differentiation of Tregs from conventional CD4+ T cells. These findings build on the already multifaceted role of lactic acid in maintaining an immunosuppressive tumor microenvironment.


Assuntos
Neoplasias , Linfócitos T Reguladores , Animais , Camundongos , Diferenciação Celular , Imunossupressores , Ácido Láctico/metabolismo , Microambiente Tumoral
14.
bioRxiv ; 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37090676

RESUMO

Within the thymus, regulation of the cellular cross-talk directing T cell development is dependent on spatial interactions within specialized niches. To create a holistic, spatially defined map of tissue niches guiding postnatal T cell development we employed the multidimensional imaging platform CO-detection by indEXing (CODEX), as well as CITE-seq and ATAC-seq. We generated age-matched 4-5-month-old postnatal thymus datasets for male and female donors, and identify significant sex differences in both T cell and thymus biology. We demonstrate a crucial role for JAG ligands in directing thymic-like dendritic cell development, reveal important functions of a novel population of ECM- fibroblasts, and characterize the medullary niches surrounding Hassall's corpuscles. Together, these data represent a unique age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, and provide an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.

16.
Front Immunol ; 14: 1107582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936943

RESUMO

Defining the immunological landscape of human tissue is an important area of research, but challenges include the impact of tissue disaggregation on cell phenotypes and the low abundance of immune cells in many tissues. Here, we describe methods to troubleshoot and standardize Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) for studies involving enzymatic digestion of human tissue. We tested epitope susceptibility of 92 antibodies commonly used to differentiate immune lineages and cell states on human peripheral blood mononuclear cells following treatment with an enzymatic digestion cocktail used to isolate islets. We observed CD4, CD8a, CD25, CD27, CD120b, CCR4, CCR6, and PD1 display significant sensitivity to enzymatic treatment, effects that often could not be overcome with alternate antibodies. Comparison of flow cytometry-based CITE-seq antibody titrations and sequencing data supports that for the majority of antibodies, flow cytometry accurately predicts optimal antibody concentrations for CITE-seq. Comparison by CITE-seq of immune cells in enzymatically digested islet tissue and donor-matched spleen not treated with enzymes revealed little digestion-induced epitope cleavage, suggesting increased sensitivity of CITE-seq and/or that the islet structure may protect resident immune cells from enzymes. Within islets, CITE-seq identified immune cells difficult to identify by transcriptional signatures alone, such as distinct tissue-resident T cell subsets, mast cells, and innate lymphoid cells (ILCs). Collectively this study identifies strategies for the rational design and testing of CITE-seq antibodies for single-cell studies of immune cells within islets and other tissues.


Assuntos
Imunidade Inata , Leucócitos Mononucleares , Humanos , Epitopos , Anticorpos , Subpopulações de Linfócitos T
17.
Proc Natl Acad Sci U S A ; 120(14): e2219086120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972454

RESUMO

Regulatory T cell (Treg) therapy is a promising approach to improve outcomes in transplantation and autoimmunity. In conventional T cell therapy, chronic stimulation can result in poor in vivo function, a phenomenon termed exhaustion. Whether or not Tregs are also susceptible to exhaustion, and if so, if this would limit their therapeutic effect, was unknown. To "benchmark" exhaustion in human Tregs, we used a method known to induce exhaustion in conventional T cells: expression of a tonic-signaling chimeric antigen receptor (TS-CAR). We found that TS-CAR-expressing Tregs rapidly acquired a phenotype that resembled exhaustion and had major changes in their transcriptome, metabolism, and epigenome. Similar to conventional T cells, TS-CAR Tregs upregulated expression of inhibitory receptors and transcription factors such as PD-1, TIM3, TOX and BLIMP1, and displayed a global increase in chromatin accessibility-enriched AP-1 family transcription factor binding sites. However, they also displayed Treg-specific changes such as high expression of 4-1BB, LAP, and GARP. DNA methylation analysis and comparison to a CD8+ T cell-based multipotency index showed that Tregs naturally exist in a relatively differentiated state, with further TS-CAR-induced changes. Functionally, TS-CAR Tregs remained stable and suppressive in vitro but were nonfunctional in vivo, as tested in a model of xenogeneic graft-versus-host disease. These data are the first comprehensive investigation of exhaustion in Tregs and reveal key similarities and differences with exhausted conventional T cells. The finding that human Tregs are susceptible to chronic stimulation-driven dysfunction has important implications for the design of CAR Treg adoptive immunotherapy strategies.


Assuntos
Doença Enxerto-Hospedeiro , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T Reguladores , Exaustão das Células T , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
18.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865123

RESUMO

Background: Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft- versus -host disease (xGVHD). Methods: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4+ and CD8+ T cells and tested their ability to reject HLA-A2+ islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T cell engraftment, islet function and xGVHD were assessed longitudinally. Results: The speed and consistency of A2-CAR T cells-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of co-injected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, co-injection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2+ human islets within 1 week and without xGVHD for 12 weeks. Conclusions: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of isletreplacement therapies.

19.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865264

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary: Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.

20.
Eur J Immunol ; 53(9): e2250002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891988

RESUMO

Regulatory T cells (Tregs) are essential for immune homeostasis and suppression of pathological autoimmunity but can also play a detrimental role in cancer progression via inhibition of anti-tumor immunity. Thus, there is broad applicability for therapeutic Treg targeting, either to enhance function, for example, through adoptive cell therapy (ACT), or to inhibit function with small molecules or antibody-mediated blockade. For both of these strategies, the metabolic state of Tregs is an important consideration since cellular metabolism is intricately linked to function. Mounting evidence has shown that targeting metabolic pathways can selectively promote or inhibit Treg function. This review aims to synthesize the current understanding of Treg metabolism and discuss emerging metabolic targeting strategies in the contexts of transplantation, autoimmunity, and cancer. We discuss approaches to gene editing and cell culture to manipulate Treg metabolism during ex vivo expansion for ACT, as well as in vivo nutritional and pharmacological interventions to modulate Treg metabolism in disease states. Overall, the intricate connection between metabolism and phenotype presents a powerful opportunity to therapeutically tune Treg function.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Imunoterapia , Autoimunidade , Neoplasias/patologia , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...